

Corporate Presentation

A New Class of Cell & Gene Therapies with the Capacity to Cure

Disclaimer

This presentation and any accompanying oral commentary contain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, as amended. Forward-looking statements are statements that are not historical facts and include, without limitation, statements related to future events; our future financial performance or condition; business strategy; expected timing and plans with respect to development milestones, clinical trials, and regulatory activities; estimated market opportunities for product candidates; statements regarding potential fees, milestone and royalty payments we may receive pursuant to our collaboration agreement; and future results of anticipated development efforts. Words such as "expect(s)," "feel(s)," "believe(s)," "will," "may," "anticipate(s)", "potentially" or negative of these terms or similar expressions are intended to identify forward-looking statements. These forward-looking statements are based on management's current expectations of future events only as of the date of this presentation and are subject to a number of important risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: the fact that our collaboration agreement with Roche may be terminated early; the fact that we will have limited control over the efforts and resources our collaborator devotes to advancing development programs under our collaboration agreement; risks associated with conducting clinical trials; whether any of our product candidates will be shown to be safe and effective; our ability to finance continued operations; our reliance on third parties for various aspects of our business; competition in our target markets; our ability to protect our intellectual property; our ability to retain key scientific or management personnel; and other risks and uncertainties described in our filings with the Securities and Exchange Commission, including under the heading "Risk Factors". Except as required by law, we assume no obligation to update these forward-looking statements, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

On a mission to advance a new class of cell & gene therapies

ALLOGENEIC CAR-T

The Future of Cell Therapy is Allo

GENE THERAPY

Addressing the Challenges of Viral Vectors and Moving to Non-Viral Delivery

OUR PEOPLE

Passionate and dedicated team working on treatments for patients with cancer and rare diseases

OUR PLATFORMS

Innovating with powerful and differentiated genetic engineering technologies

3

Allogeneic CAR-T

The Future of Cell Therapy is Allo

Poseida is emerging as an industry leader in allogeneic CAR-T

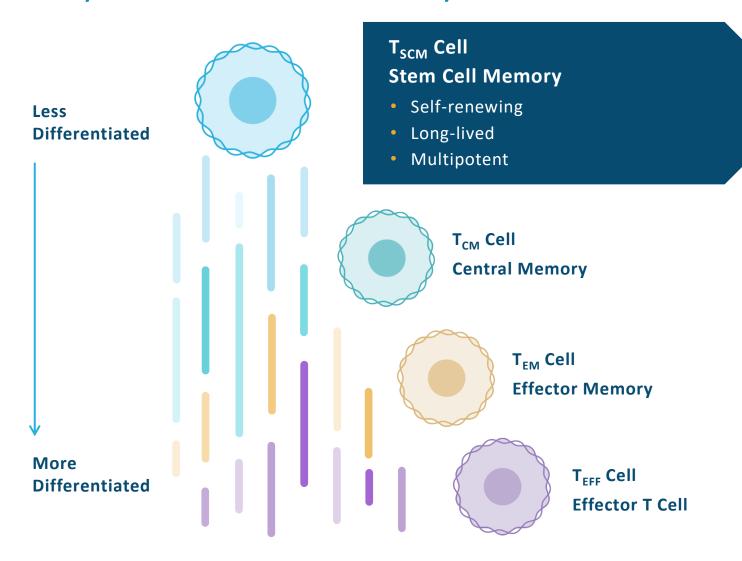
Poseida's Vision:

Our T_{SCM}-rich allogeneic CAR-T will enable all patients who can benefit from transformational cell therapy to be able to do so "Built in" product differentiation from our unique T_{SCM}-rich CAR-T approach

Fully proprietary genetic engineering and toolkit designed for T_{SCM}-rich allo CAR-T

Clinical proof-of-concept delivered through lead P-BCMA-ALLO1 program

Manufacturing platform advancing in lockstep with clinical development


Robust and growing multi-asset pipeline

Allo CAR-T company of choice for top pharma (Roche, Astellas)

Holistic systems engineering approach to allogeneic cell therapy

Stem cell memory T cells (T_{SCM}) are the ideal cell type for CAR-T and have always been our focus and key source of differentiation

STEMNESS MATTERS

Products with high % of T_{SCM} cells:

- Strong correlation with best responses in the clinic
- More gradual tumor killing with less toxicity
- Better duration of response and potential for re-response – T_{SCM} engrafts and persists in tissue

piggyBac preferentially transposes naïve and T_{SCM} cells

Poseida's proprietary tools provide the many capabilities required to produce T_{SCM} -rich allogeneic CAR-T

Technology Requirements

piggyBac

Cas-CLOVER

Booster Molecule

Gene Insertion

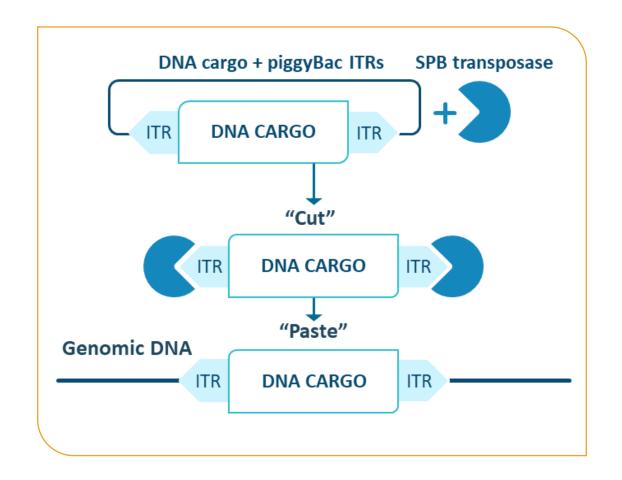
- ✓ Preferentially insert into T_{SCM}
- √ Single-step multi-gene insertion
- ✓ Non-viral
- ✓ Efficient and cost effective

Gene Editing

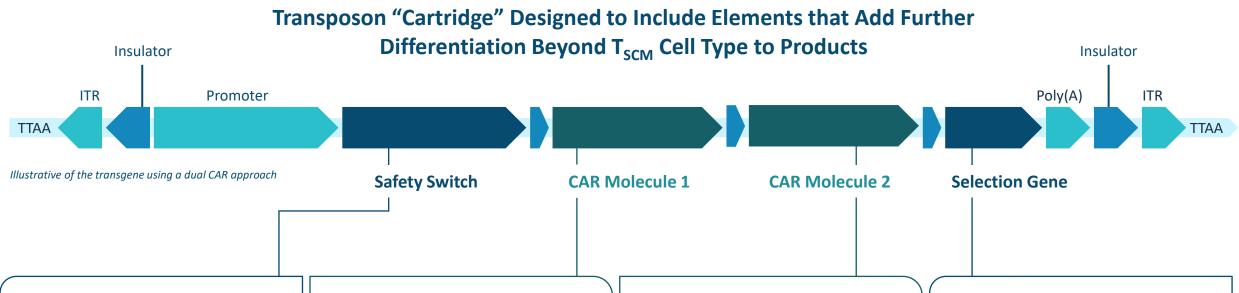
- √ Preserve T_{SCM} cell type
- √ Low/no off-target effects
- √ Efficient

Quality Manufacturing at Scale

- ✓ Preserve T_{SCM} cell type
- √ High yield at low cost
- ✓ Pure CAR-T cell product


Poseida tools designed to work together as a system

PiggyBac is an effective, non-viral system that inserts one or more genes in a single step to deliver a T_{SCM} -rich cell therapy product


PIGGYBAC FOR CAR-T DRUG DEVELOPMENT

- Non-viral, transposon-based system that avoids viral vector issues such as cost, quality/safety, and limited cargo capacity
- Preferentially transposes naïve and stem cell memory T cells resulting in T_{SCM} rich product
- Works well in resting T cells so T_{SCM} phenotype can be preserved
- Large cargo capacity can deliver one or more CARs, inducible safety switch, and selectable marker in single step
- Achieves stable DNA integration and works in a wide variety of cell types

PiggyBac enables Poseida to build tremendous functionality into its allogeneic CAR-T cell therapies

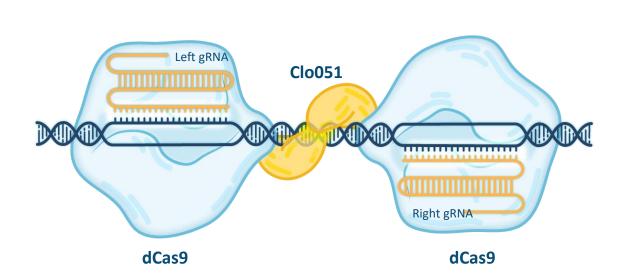
INCORPORATES PROPRIETARY SAFETY SWITCH

- Rapid, dose-dependent elimination of engineered Tcells as needed
- Potential management of Cytokine Release Syndrome (CRS) or other AEs

DIFFERENTIATED BINDING CAR-T MOLECULE

- VH or next generation molecules with high-specificity binding
- VH binders are fully human with no tonic signaling observed to date

DUAL TARGETING TO IMPROVE EFFICACY


- Large cargo capacity of piggyBac allows dual delivery of CAR molecules or CAR-TCR
- Dual CAR/CAR-TCR molecules enable targeting of heterogenous tumors

DRUG RESISTANCE GENE PERMITS POSITIVE SELECTION

- ~100% of T-cells in final product express the CAR molecule
- Predicted to result in greater therapeutic index

Poseida's Cas-CLOVER gene editing system addresses graft vs. host and host vs. graft alloreactivity in allogeneic CAR-T while preserving product stemness

HIGH-FIDELITY, DESIGNED FOR LITTLE TO NO OFF-TARGET CUTTING

- Utilizes deactivated dCas9 as a binding protein with gRNA
- dCas9 guides a fused nuclease domain from the Clo051 enzyme, which only cuts DNA when bound to its matching pair
- Edits in current clinical-stage CAR-T include TCR and B2M (MHC I) knockouts

ADVANTAGES OF CAS-CLOVER¹

- Unlike many other approaches to gene editing, effective in resting T cells
- Fidelity possibly up to 25-fold greater than CRISPR-Cas9
- High editing efficiency in resting T cells results in high levels (50–70%) of T_{SCM}
- Preserves stemness because T cell activation, which stimulates differentiation, is avoided
- Multiplexing potential for multiple edits in a single efficient step

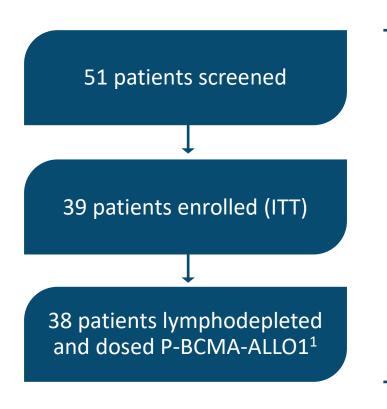
Our robust allogeneic CAR-T pipeline includes three clinical-stage programs and other upstream projects

Discovery research includes additional programs targeting validated and novel indications, across a range of diseases, with potential to incorporate new platform elements

P-BCMA-ALLO1, partnered with Roche, represents a new category of allogeneic CAR-T with a compelling value proposition for patients with multiple myeloma

P-BCMA-ALLO1

- Lead program in heme malignancies partnered with Roche
- Targeting B cell maturation antigen (BCMA)
- Early data (ASH 2023) is pace-setting for allo CAR-T in MM


Ongoing clinical development with data updates in 2024

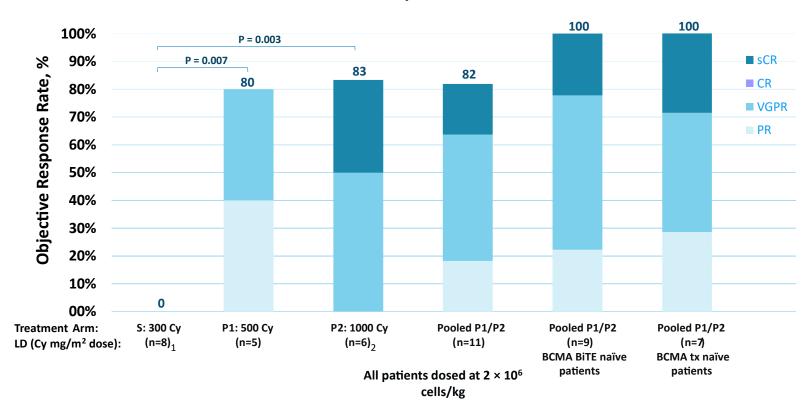
Target product value proposition	P-BCMA-ALLO1 early product profile
 ★ Effective myeloma control High response rates Deep responses including in hard to treat patients 	 ✓ 82% ORR¹ ✓ 100% ORR in BCMA bispecific-naïve pts ✓ sCR, MRD⁻ responses ✓ Prior CAR-T, high-risk patient responses
★ Favorable emerging safety profile and well-tolerated	 ✓ No GvHD, DLT ✓ Low rates, CRS, neurotox all Gr ≤2 ✓ Non-viral approach with built in safety switch
☆ Avoid unnecessary burden	 ✓ No invasive patient apheresis ✓ No anti-myeloma bridging therapy ✓ Low CRS, neurotox limits adjunctive therapy use for side effects
☆ Reliable quality	✓ Treatment of all enrolled patients, with in-spec product
★ Convenient, rapid, and accessible for patients	 ✓ Shipping from inventory ✓ Outpatient usage ✓ Treatment in 1 week ✓ Low manufacturing cost

ORR = overall response rate; sCR = stringent complete response; MRD = minimal residual disease;

GvHD = graft vs. host disease; DLT = dose limiting toxicities; CRS = cytokine release syndrome

ASH 2023: Rapid and convenient CAR-T administration for entire intent-to-treat (ITT) population without need for apheresis

- 100% of ITT population underwent LD and received P-BCMA-ALLO1
 (1 patient had not begun LD by data cutoff date)
- No patient required bridging therapy
- Median time from enrollment to:
 - Start of LD was 1 day²
 - P-BCMA-ALLO1 infusion was 7 days²
- Patients were heavily pretreated with median 7 lines of therapy; ~40% previous BCMA therapy and 30% high-risk cytogenetics

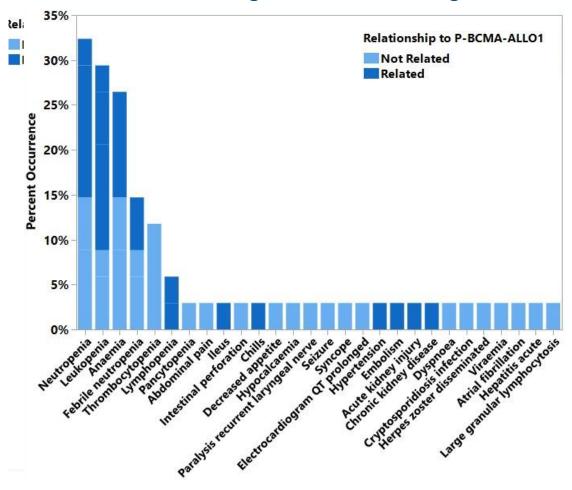


^{1.} Interim safety analysis on patients (n = 33) given an infusion of P-BCMA-ALLO1 (including cyclic arm patient) and with a minimum of 4 weeks follow-up. Data cutoff for safety and efficacy analysis was Oct. 23rd, 2023

^{2.} N=33, analysis excludes patient retreated with P-BCMA-ALLO1 ITT = intent-to-treat defined at enrollment; LD = lymphodepletion

ASH 2023: Deep responses and a high response rate in BCMA naïve and prior BCMA therapy exposed RRMM patients receiving adequate lymphodepletion

- 82% overall ORR in pooled P1/P2 cohorts
- 100% ORR in all P1/P2 patients who had received any prior anti-myeloma treatment, including auto BCMA CAR-T, other than teclistamab
- sCR rate 40% (2/5 pts) in P2 cohort responders
- Some P1, P2 patients achieving MRD
 status, including patients those with high-risk cytogenetics, extra medullary disease
- At data cut off, 8 of 9 responders in P1 &
 P2 arms still in response

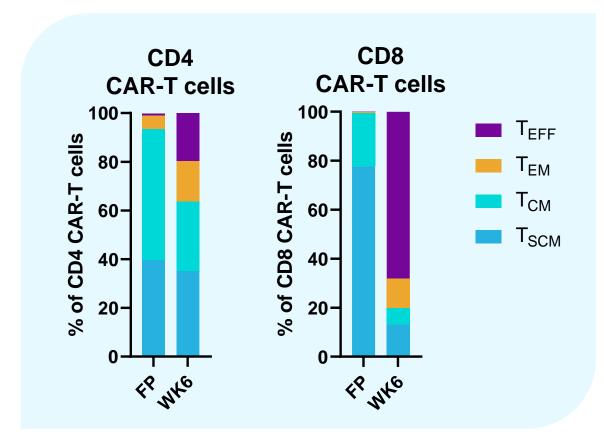


ASH 2023: P-BCMA-ALLO1 is well tolerated in RRMM patients

SAFETY SUMMARY

- Dose-levels through 6 × 10⁶ cells/kg cleared with no DLTs
- No GvHD observed at any dose
- Low CRS incidence (21%), Grade ≤ 2 in severity
- Neurotoxicity (Grade ≤ 2) observed in 2 patients (6%)
 - No Parkinson's-like symptoms
- Serious infections were uncommon even in the higher LD arms
- Grade ≥ 3 TEAEs were associated mainly with LD and myeloma

All treatment-emergent adverse events grade ≥ 3



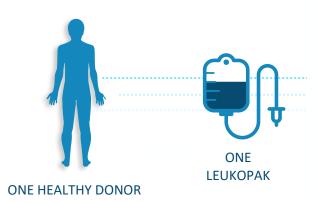
ASH 2023: T_{SCM}-rich P-BCMA-ALLO1 cells traffic to tumor site, differentiate to an active oncolytic cell type, and persist

DATA FROM A PATIENT ACHIEVING AN MRD-NEGATIVE, STRINGENT COMPLETE RESPONSE

- T_{SCM}-rich CAR-T can be thought of as prodrugs, meaning they can expand and differentiate into T effector cells after infusion into a patient
- Patient data obtained >6 weeks after treatment supports this premise
 - CAR-T drug product infused was rich in T_{SCM} and central memory (T_{SCM}) T cells carrying the CAR
 - In bone marrow, where myeloma is found, a tissue sample collected >6 weeks after infusion showed cells, especially CD8+ "killer" T cells became oncolytic effector (T_{FFF}) CAR-T cells
 - CAR-T cells were plentiful in the bone marrow, making up ~14% of all marrow lymphocytes at this timepoint, and ~70-fold more concentrated than in peripheral blood
- First known clinical evidence supporting T_{SCM}-rich CAR-T hypothesis for an allogeneic CAR-T

Final drug product (FP) phenotype for patient #23 in comparison to CAR-T phenotype by % T_{SCM} , T_{CM} , T_{EM} and T_{EFF} of CD4 and CD8 CAR-T cells

Summary: P-BCMA-ALLO1 is a promising "off-the-shelf" T_{SCM}-rich allogeneic CAR-T therapy based upon preliminary phase 1 results


- Rapid, accessible treatment to meet urgent patient needs
 - 100% treatment of the ITT population with in-spec product and no bridging therapy
 - Median "brain-to-vein" time (enrollment to infusion) of 7 days, including lymphodepletion
- Favorable emerging safety profile
 - No GvHD or DLT and low rates of CRS, neurotoxicity all Gr ≤ 2
- Deep clinical responses in very heavily pretreated patients receiving adequate lymphodepletion
 - 82% overall ORR in pooled P1/P2 cohorts
 - 100% ORR in all P1/P2 patients who had received any prior anti-myeloma treatment, including auto BCMA CAR-T, other than teclistamab
 - sCR rate 40% (2/5 pts) in P2 cohort responders
 - Some P1, P2 patients achieving MRD- status, including patients with high-risk cytogenetics, extra-medullary disease
- Prodrug-like P-BCMA-ALLO1 cells demonstrate expansion, trafficking to site of malignancy, differentiation, and persistence
- Further clinical development of P-BCMA-ALLO1 is ongoing, with data updates in 2024 (coordinated with Roche)

Poseida's manufacturing platform, used across all products, delivers T_{SCM} -rich product with high purity

P-BCMA-ALLO1 example

Allogeneic manufacturing process enhanced with Booster Molecule technology to deliver high yields

Manufacturing

T Cell Isolation

Non-viral Gene Editing

CAR-T Cell Selection and

Expansion

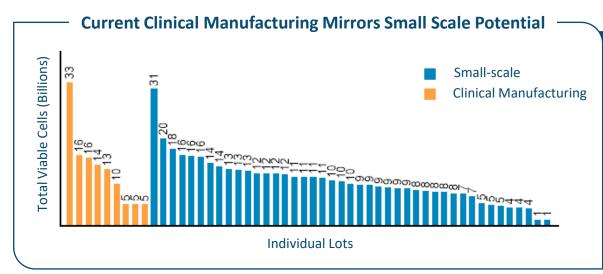
Purification

Fill/finish

Storage in Inventory

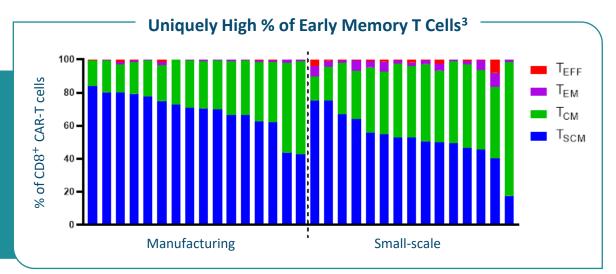
preserves T_{SCM} phenotype

Production process


- Nearly all CAR-carrying cells
- "On demand" delivery to site of care

P-BCMA-ALLO1 Phase I study data presented at ASH 2023 illustrates our manufacturing capability, using product from 6 manufacturing lots and 6 different qualified donors

Poseida manufacturing platform using booster molecule technology is scalable and cost effective


Scale-up to in-house clinical manufacturing has successfully preserved T_{SCM} cell type while steadily increasing output

Manufacturing lots above represent output from process improvements implemented in May 2023

- Poseida performs internal GMP manufacturing to supply all clinical stage programs²
- Advances have been accomplished without compromising Poseida's unparalleled consistency in early memory CAR-T (>95% T_{SCM} + T_{CM})

- Proven ability to translate high yield from early small-scale results to GMP clinical manufacturing setting
- For illustrative purposes, a yield of 30 billion cells could provide over 100 doses per manufacturing run from a single leukopack¹

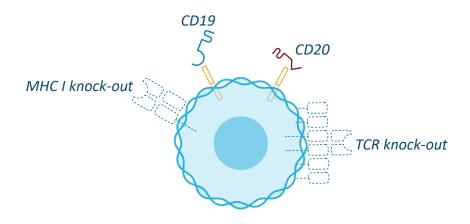
Representative manufacturing lots for Phase I product through June 2023

- 1. Assumes observed therapeutic dose range of 50 300 million cells
- 2. Currently P-MUC1C-ALLO1, P-BCMA-ALLO1, and P-CD19CD20-ALLO1
- 3. T memory stem cells in health and disease. Nature Medicine, 2017

P-CD19CD20-ALLO1 – Poseida's first dual CAR-T is partnered with Roche

Motivation

- Post CAR-T relapse remains a common problem in B-cell malignancies
- Early autologous CD19/CD20 CAR-T data suggests dual targeting can be effective
- Allogeneic approach would be commercially attractive


Clinical Trial

- Phase 1 study enrolling B-cell malignancies (NCT04960579)
- 3x3 design, with flexibility for expansion
- Poseida produced GMP product

Status

- Lymphodepletion learnings from other programs incorporated
- Initiated Phase 1 clinical trial

P-CD19CD20-ALLO1

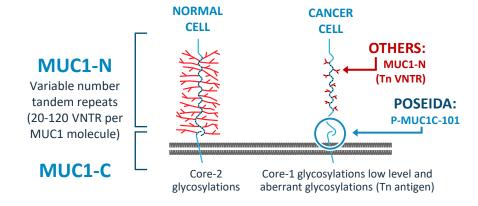
- Differentiated, carrying 2 full length CARs and other Poseida platform elements¹
- First known allogeneic dual CD19+CD20 targeting CAR-T

Data update anticipated in 2H24

P-MUC1C-ALLO1 is Poseida's lead solid tumor allogeneic CAR-T program

Motivation

- High unmet medical need in many epithelial cell-derived tumors
- Poseida's autologous PSMA program showed clinical effect of T_{SCM}-rich CAR-T in a solid tumor


Clinical Trial

- Phase 1 basket study enrolling treatment resistant breast, ovarian, pancreatic and other tumors (NCT05239143)
- Flexible 3x3 design; Poseida produced GMP product

Status

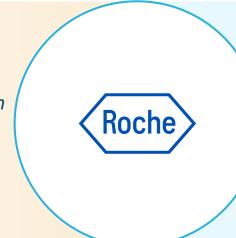
- Favorable early data (ESMO-IO 2022)
 - No DLT, CRS, GvHD or neurotoxicity
 - PR in breast cancer
- Ongoing exploration of dosing regimen
 - Cell dose, increasing lymphodepletion, dose administration

P-MUC1C-ALLO1

- Unique approach to targeting MUC1C protein at tumor specific moiety
- Also carries Poseida's platform¹ elements

Data update planned 2H24

1. Safety switch, selectable marker, TCR KO, β 2M KO DLT=dose limiting toxicities; CRS= cytokine release syndrome; GvHD= graft vs. host disease



The power of partnerships: Roche collaboration validates allogeneic platform

Meaningful clinical progress for partnered programs and ongoing milestone achievement

OVERVIEW

- P-BCMA-ALLO1 licensed
- P-CD19CD20-ALLO1 licensed
- P-BCMACD19-ALLO1 option program
- P-CD70-ALLO1 option program
- Research collaboration with 6 additional Heme Targets

ECONOMIC SUPPORT

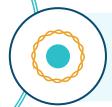
- \$110 million in upfront payments (August 2022)
- Based on progress made, recent milestone acceleration extended cash runway by ~6 months, runway now into the second half of 2025
- Research, development, launch, and net sales milestones and other payments potentially up to \$6 billion in aggregate value, plus royalties
- Significant direct and indirect support from Roche and additional upside

Excitement Around Heme CAR-T | Continued Validation of Platform | Supporting Financial Position

Poseida's consistent platform reflects a holistic systems engineering approach to CAR-T set to deliver product after product

Robust healthy donor screening system

Non-viral gene insertion and gene editing approaches the same across all programs, and **customized for T_{SCM} cells**



"On-demand" delivery of therapy from inventory through supply chain

Proprietary **Booster Molecule** improves manufacturing yield

Enterprise
Poseida's platforms
enable the "capacity to
cure" in a new class of
CAR-T therapies

Selectable marker supports purification so that nearly all cells are CAR-carrying, with the potential for optimal therapeutic index

Safety "switch" to selectively eliminate CAR-T cells in the patient, if necessary

Unit operations optimization across process development and quality, applied to all programs

Poseida has taken a deliberate platform approach to develop a pipeline of allogeneic CAR-T programs that use the same proprietary technologies, the same manufacturing platform and reflect similar production methods

Platform enables delivery of a continuous pipeline of products

Versatile Application

- Platform gives us roadmap to endless product possibilities
- Extendable to CAR-TCR, further functionality via more added genes
- Hematology, solid tumors, and other diseases

Ideal cell type (allo T_{SCM})

- Demonstrated, powerful efficacy
- Prodrug approach for safety and tolerability
- Persistence in target tissue
- Redosing opportunities

Scalable to meet market demand

- Reproducible, higher yield processes scalable to supply demand in high-prevalence diseases
- Technology to potentially deliver 100+ doses from single leukopak¹, dramatically lowering cost

Optimal experience for patient and provider

- On-demand ordering from inventory
- Reliable quality
- Avoid invasive, costly and complex apheresis and bridging therapies
- Treatment within days
- Outpatient usage

Gene Therapy

Addressing the Challenges of Viral Vectors and Moving to Non-Viral Delivery

Non-viral gene therapies designed for commercial adoption

VISION

Non-viral gene editing and gene therapies accessible to all patients without restrictions

Viral		Poseida Non-Viral	
Dosing	One time, no ability to re-dose	Re-dosable, titratable to achieve optimal expression Potential to remove / modulate expression	
Safety	High titers required Immune responses Deaths reported	Low immunogenicity Engineered around safety issues	
Durability	Variable patient data LOE over time in liver	Integrated, stable expression	
Value	One time payment	Value with repeat dosing	
Manufacturing	High costs Issues with empty- full capsids	No viral components COGS favorable w/ subsequent programs	

Purpose built for commercial adoption

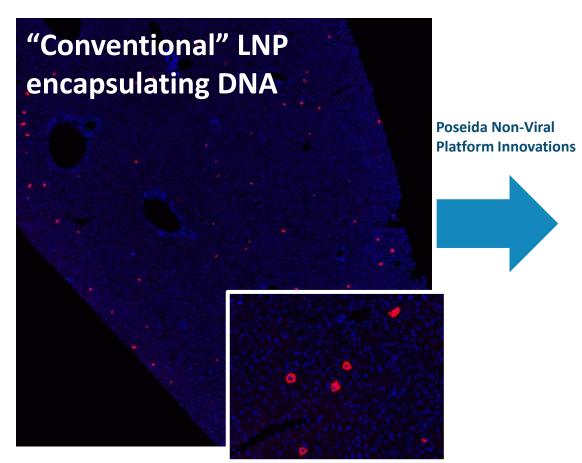
Right Indications

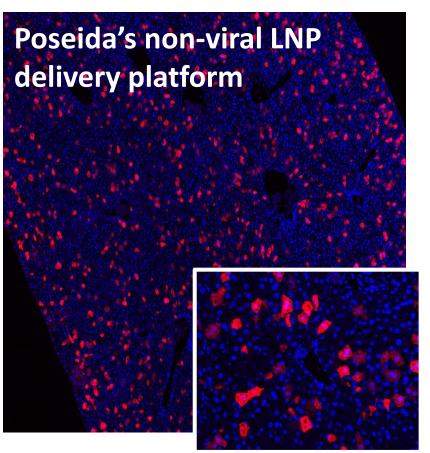
- Treat to target / titration
- Dividing / non-dividing target cells / integration and re-dosing
- Existing reimbursement / clinical biomarkers for speed
- Starting with Hemophilia A for gene insertion

Right Technology

- Proprietary, engineered LNPs with lower cytokine responses
- Proprietary piggyBac gene insertion technology integrates large DNA for stable expression with reversible integration
- Gene editing technology allows for re-dosable and scar-less gene modification with little to no off-target editing

Right Clinical Planning


- Early validation of re-dosing, durability curves with gene insertion
- Titration, dose response and treat- to-target designed into protocols early in trials
- Establish safety, potential for innovative dosing pathways



Delivery: Non-viral LNP technology enables broad hepatocyte transduction

Delivery advancements enabling Poseida as a leader in non-viral gene delivery

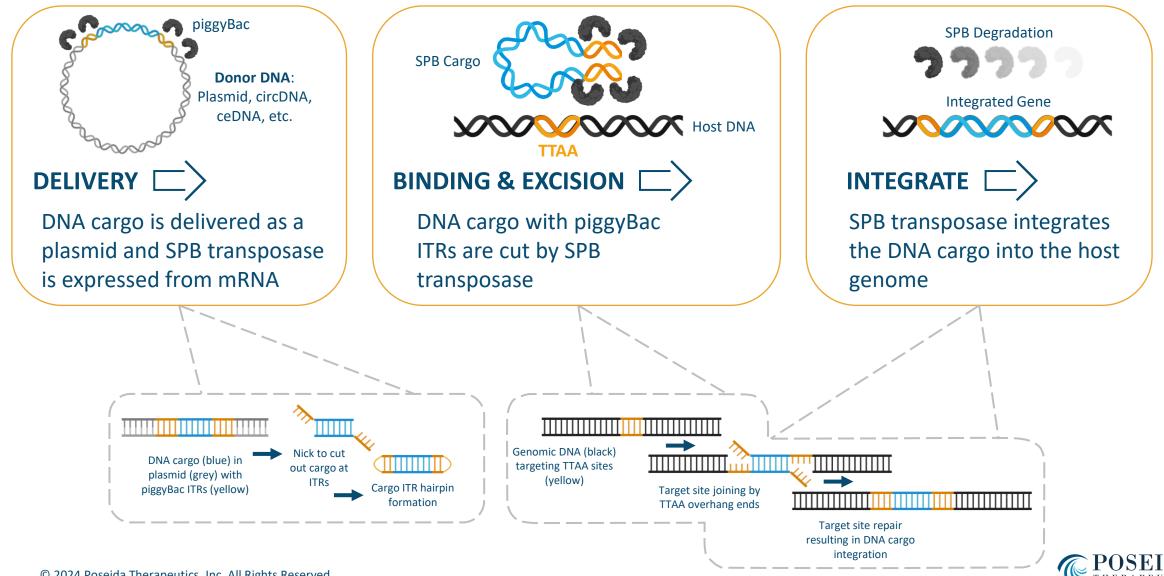
Low proportion of hepatocytes expressing DNA construct is inadequate for meaningful disease correction

Widespread distribution of hepatocytes expressing DNA construct is suitable for correction of numerous diseases

Key Highlights

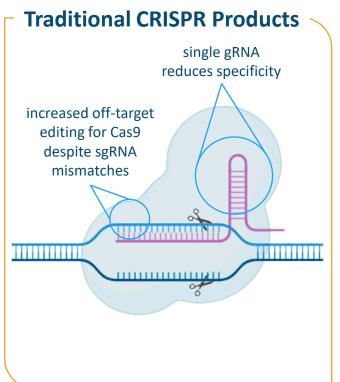
- Suite of proprietary non-viral lipid nanoparticles (LNP) delivering RNA / DNA focused on liverdirected diseases
- Expansion of liver directed LNPs and enhancements to platform
- Continued development of new, novel LNPs across a range of other tissue targets

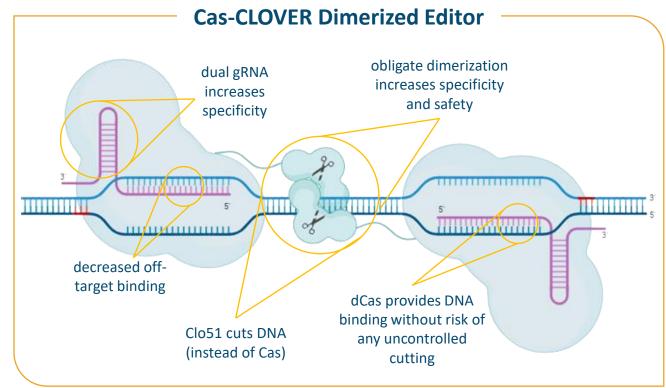
Our gene therapy pipeline

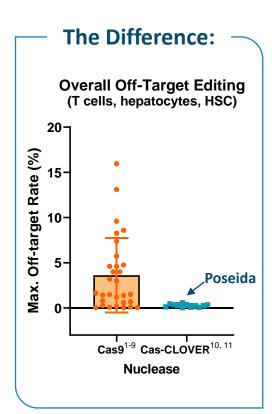

Initial focus on liver-directed gene therapy for genetic diseases

	INDICATION	DISCOVERY	PRECLINICAL	IND-ENABLING
Liver Directed				
P-FVIII-101	Hemophilia A			
P-OTC-101	Ornithine Transcarbamylase Deficiency			
P-PAH-101	Phenylketonuria			

Pipeline update planned for Gene Therapy R&D Day – April 17, 2024



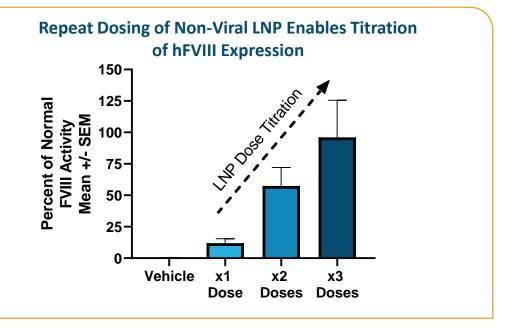

PiggyBac: Provides high efficiency and durable responses



Cas-CLOVER: Potentially the cleanest gene editing

High-fidelity system offers potential as highly differentiated system with low to no off-target editing


Very low to no off-target editing with Cas-CLOVER compared to CRISPR-Cas9 systems¹⁻⁹



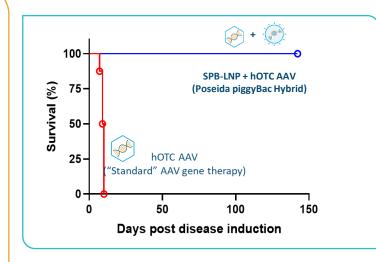
P-FVIII-101: Non-viral delivery of Factor VIII via piggyBac for Hemophilia A

Hemophilia A opportunity remains wide-open for a better, more durable gene therapy approach

- Caused by deficiency in functional coagulation Factor VIII
- ~1 in 5,000 male births with ~60% of patients suffering from severe form¹
- Disease managed with lifelong, repeated IV or subcutaneous administrations

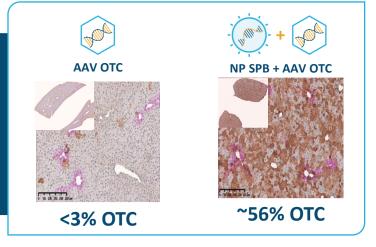
Nanoparticle delivery of piggyBac enables:

- Permanent disease correction: DNA is stably integrated into liver hepatocytes, durability observed for 12 months
- Large size of F8 easily accommodated with all key regulatory elements; favorable genotoxicity profile
- Biodegradable Lipid Nanoparticle avoids AAV toxicity and enables redosing and treatment all ages



P-OTC-101: Ornithine Transcarbamylase Deficiency (OTCD) program

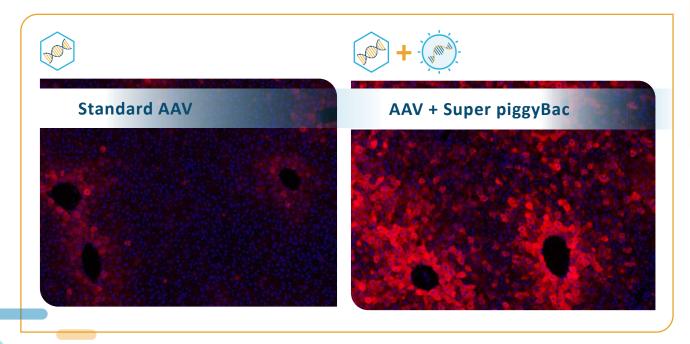
Treating OTC Deficiency

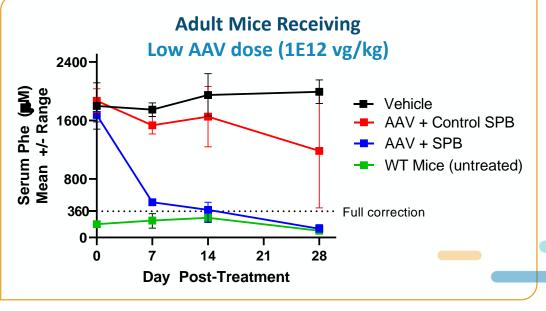


- AAV delivers therapeutic transgene (OTC expression cassette)
- Biodegradable lipid nanoparticle (LNP) delivers
 SPB as mRNA
- Single-dose treatment early in life enables treatment of most severely effected patients prior to irreversible damage
- High unmet disease caused by deficient OTC gene, requiring liver transplant in severe phenotype

100% survival in disease mouse model compared to Standard AAV

Our approach achieves >50% of cells expressing OTC, achieving required threshold for survival / full disease correction





P-PAH-101: Aims to transform standard of care for Phenylketonuria

Phenylketonuria (PKU) remains key area of high unmet need for gene therapy

- PKU occurs in 1 in 10,000 to 15,000 newborns¹
- Rare genetic metabolic disorder that increases the body's levels of phenylalanine
- Current PKU therapies require lifelong management²

P-PAH-101 (Hybrid – SPB LNP + AAV) demonstrates:

- Early proof of concept to deliver a functional cure for PKU
- Ability to reduce serum phenylalanine to normal levels following a single IV administration
- Early ability to significantly reduce AAV titers versus AAV alone

Passionate and experienced leadership team driven to unleash value

Kristin Yarema, Ph.D. President and CEO

AMGEN

b NOVARTIS

McKinsey & Company

Johanna Mylet Chief Financial Officer

Strong recent progress with multiple potential milestones on the horizon

CELL THERAPY

GENE THERAPY

P-FVIII-101 preclinical update at ASH 💙

Initiated P-CD19CD20-ALLO1 clinical trial

2024

Gene Therapy R&D Day April 17, 2024

P-MUC1C-ALLO1 clinical data in 2H2024

P-BCMA-ALLO1 clinical data in 2H2024¹

P-CD19CD20-ALLO1 initial data in 2H2024¹

Strong financial position bolstered by strategic investments

Well capitalized into the second half of 2025, enabling time to key inflection points with upcoming data readouts (P-BCMA-ALLO1, P-MUC1C-ALLO1 and P-CD19CD20-ALLO1)

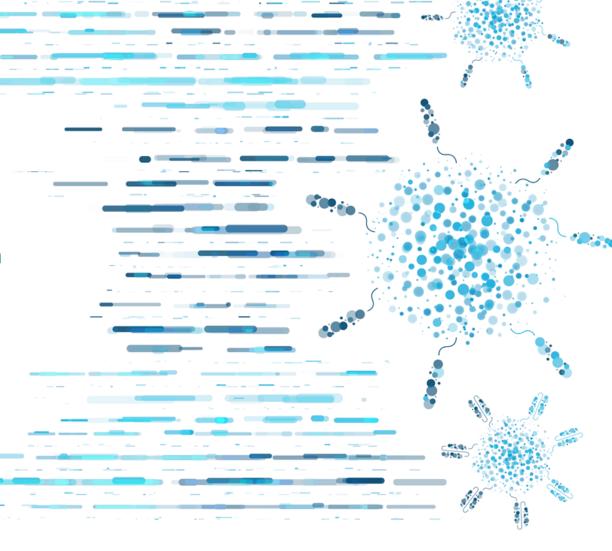
Cash Runway Into Second Half 2025

- \$212 million in cash, cash equivalents and short-term investments as of December 31, 2023
- Well capitalized into the second half of 2025 based on existing cash and expected baseline nearterm payments from Roche

Key Relationships Validate Long-term Vision

- Roche Collaboration:
 Accelerated and increased certainty of achieving upcoming milestones and payments in November 2023
- Astellas Strategic Investment:
 \$50 million investment in August
 2023 further validated Poseida's
 technology and approach

Potential for Additional Value Creation


- Significant upside potential
 through achievement of additional
 milestones and other payments
 under the Roche collaboration,
 not already included in current
 cash runway
- Business development
 opportunities have potential to
 further extend cash runway with
 non-dilutive capital

Thank You

A New Class of Cell & Gene Therapies with the Capacity to Cure

